Structural and functional characterization of recombinant mouse annexin A11: influence of calcium binding.
نویسندگان
چکیده
Annexin A11 is one of the 12 vertebrate subfamilies in the annexin superfamily of calcium/phospholipid-binding proteins, distinguishable by long, non-homologous N-termini rich in proline, glycine and tyrosine residues. As there is negligible structural information concerning this annexin subfamily apart from primary sequence data, we have cloned, expressed and purified recombinant mouse annexin A11 to investigate its structural and functional properties. CD spectroscopy reveals two main secondary-structure contributions, alpha-helix and random coil (approx. 30% each), corresponding mainly to the annexin C-terminal tetrad and the N-terminus respectively. On calcium binding, an increase in alpha-helix and a decrease in random coil are detected. Fluorescence spectroscopy reveals that its only tryptophan residue, located at the N-terminus, is completely exposed to the solvent; calcium binding promotes a change in tertiary structure, which does not affect this tryptophan residue but involves the movement of approximately four tyrosine residues to a more hydrophobic environment. These calcium-induced structural changes produce a significant thermal stabilization, with an increase of approx. 14 degrees C in the melting temperature. Annexin A11 binds to acidic phospholipids and to phosphatidylethanolamine in the presence of calcium; weaker calcium-independent binding to phosphatidylserine, phosphatidic acid and phosphatidylethanolamine was also observed. The calcium-dependent binding to phosphatidylserine is accompanied by an increase in alpha-helix and a decrease in random-coil contents, with translocation of the tryptophan residue towards a more hydrophobic environment. This protein induces vesicle aggregation but requires non-physiological calcium concentrations in vitro. A three-dimensional model, consistent with these data, was generated to conceptualize annexin A11 structure-function relationships.
منابع مشابه
Calcium Signalling Joint Meeting with the Belgian Society for Cell Biology and The European Calcium Society
AN INVESTIGATION INTO THE PHYSIOLOGICAL ROLE OFANNEXIN A11 A. Tomas and S.E. MossDivision of Cell Biology, Institute of Ophthalmology, University College London, London (UK) Annexin A11 is a calcium-dependent phospholipid-binding protein that interacts in vitro with the EF-hand protein, Calcyclin. It is broadly distributed and has the longestN-terminal domain (197 aa) of all known a...
متن کاملBiochemical characterization of tomato annexin p35. Independence of calcium binding and phosphatase activities.
Tomato annexin p35 has been cloned and used in a site-directed mutagenesis study to explore the phospholipid binding and catalytic properties of the protein in detail. Analysis of the cDNA sequence of p35 reveals that the annexin has only two typical endonexin folds, corresponding to repeats I and IV. Expression of recombinant p35 in Escherichia coli confirmed both phospholipid binding and a nu...
متن کاملSerum Factors Induced the Nuclear Location of Annexin V in the Human Osteosarcoma Cell Line (MG-63)
Calcium-binding proteins play essential roles in the cell. One important class of calcium-binding proteins is the annexin family. This is a family of 13 proteins, which binds to phospholipids in a calcium-dependent manner. Osteosarcoma cell line (MG-63) is a transformed cell that has many characteristics of the differentiated cell, such as a considerable serum dependency in its growth rate. Usi...
متن کاملStructure-function relationship in annexin A13, the founder member of the vertebrate family of annexins.
Annexin A13 is considered the original progenitor of the 11 other members of vertebrate annexins, a superfamily of calcium/phospholipid-binding proteins. It is highly tissue-specific, being expressed only in intestinal and kidney epithelial cells. Alternative splicing generates two isoforms, both of which bind to rafts. In view of the lack of structural information supporting the physiological ...
متن کاملSynthesis and Investigation of Structural, Magnetic and Antibacterial Properties of Calcium-Magnesium Ferrite Nanoparticles by Thermal Treatment Method
This paper reports optical, magnetic and antibacterial properties of calcium-magnesium nanostructure which was prepared by a simple thermal treatment method. Calcination was conducted at temperatures 500 K, The influence of calcination temperature on the degree of crystallinity, microstructure, and phase composition was investigated by different characterization techniques, i.e., X-ray diffract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 373 Pt 2 شماره
صفحات -
تاریخ انتشار 2003